
• Hello everyone, my name is Chris Priest and I’m here to tell you the three
things that I would tell myself, before my first cloud project, if I had a time
machine

• I’ve been involved in cloud projects in one way or another for nearly a
decade

• and right now I work at the cloud-first consultancy Amido

• if you fancy working with a bunch of nice people exclusively on cloud
projects then come & have a chat – we’re downstairs

1

- I imagine that most of us have finished a project in the past (cloud
or not) and then immediately said, with the benefit of hindsight, “I
would have done that differently if I did it again”

- It’s not been any different for me in & around the cloud and

- So I’m gonna talk about three things
- Serverless
- Trade-offs in cloud compute
- The cloud mindset

2

• If I had a time machine: I would tell myself what “serverless” really means
• I think the name is misleading, I think a better / more descriptive name is
“utility compute”

3

I want you to think for a second about typical utility services you
have in your home

Water, gas, electricity
The question is, What makes them utility services

- You dont care about how the service gets to you (how it’s
generated or refined), or about the underlying infrastructure (
how it’s pumped or transmitted to you) — that is all
outsourced to the energy company, water company
- They are on demand & made available at precisely the point
that you need them
- They are metered — you pay for exactly what you use (more
or less, there might be a small service charge)

This is much like how serverless operates.
You don’t worry about underlying infrastructure
Available on-demand at precisely the point it’s needed
You pay for what you use

Conversely, Instance-based compute (AWS EC2, Azure VMs,
CosmosDB, Azure App Services) are not utility computing / serverless

Just think about this for a second
Imagine that at the beginning of the day you buy a 1000 litres of
water to use in your house – be conservative

4

You Use what you use out of that metric tonne
And then you dump what you’ve not used at midnight
and then next day buy some more -- what a waste

This is exactly how instance-based compute is bought
You pre-buy or pre-allocate some compute to use, and
then do your best to make the most of it while you have
it.
Nothing necessarily wrong with this, but it helps to
understand the paradigm.
We’ll talk more about this later

When you shift your thinking into this space, and understand what
serverless really means, then your approach / when you decide to use
it - changes

4

But beware! There are a few things that I wish I had known:

1) There are big differences depending on the choices you make…
cold-start times — the time taken for your application to start
in a serverless environment – depends on

Language: C# Java take slightly longer than Node /
Python
other things, such as memory allocation, application size

Not necessarily a problem, just worth being aware of

2) Some providers are better at scaling out than others
For an in-depth view of this, then take a look at James
Randall’s excellent blog on how well Azure v AWS scale out
under increasing load
Just google Scaling Face Off
another blog post following up where the problem is fixed
Not necessarily a problem, just worth being aware of

3) The last thing to be aware of is a Shift in architecture or
programming model, to an event-based approach

serverless architectures tend to work best when they are event
driven

5

if your serverless architecture is not based around events, then
you might want to have a re-think

5

If I had a time machine: I would have taught myself the relationship
between lead-time, operating-scale & cost
You see, Lead-time, operating-scale & cost are intrinsically related
But let’s look at some definitions first

Lead-time — the time it takes to react to a change in business
or technical policy — for example, more visitors to your
website, a technical failure, or a change to your infrastructure

A Low lead-time is measured in hundreds of milliseconds
— typically serverless technologies
A High lead-time is measure in minutes - typically
instance or managed app based technologies

By Operating-scale — the scale at which you wish to operate
your system

Low is measured in maybe tens or hundreds of
concurrent users
High is measured in ten or hundreds of thousands of
concurrent users

Cost — the cost to run your site per user / interaction (not
overall cost) — so the cost to service one customer, one
software licence etc etc

Cost is very subjective and therefore very hard to set
guidelines, but it must be proportional to your business.

6

e.g. high cost for a startup may be a low cost for an
established business

6

So these three things are linked, and in a way that you might have
heard some sales people refer to speed, quality & cost.
That is, you can only choose two.

There are three possibilities, and they are all good options
High operating scale + low lead-time = probably a serverless
type of technology, and the cost is likely to be relatively high

High operating scale + low cost = probably an instance or
managed app based technologies. But these have higher lead-
time, or reaction time

Low lead-time + low cost = again probably a serverless type
tech. Forced to keep operating-scale low

7

Why is this important to understand?
It’s important, I think, so that you make the right choices at the
moments in your project life cycle
You are going to want to make different choices if you are startup on
a shoestring budget, or a prototype team in a large organisations
Vs a mature organisation with an established mature product

I was working at a start-up a few years ago, we had no money, no
customers, we started with instance based compute

by doing this, we literally chose the worst possible option.
We chose the high cost, high lead-time option when we had a
low operating scale.

The high-lead time mean our development cycle was
slower & we were less able to react to the business.

The high costs meant our runway was shorter
there were literally no benefits to this approach
It would would have been much better for us if we’d

Starting with serverless based tech while we were at a
low-operating scale

we would have had a low-lead time — meaning we
could iterate rapidly with our software
development, and we would have had the ability to

8

react if we suddenly achieved sales
low cost — would have meant that our runway
would have lasted longer

as we matured (and we better understood our business)
— it would have made sense to optimise towards a high-
operating scale / low cost instance-based model, where
we could more easily accept / manage the higher lead-
time

The thing for me is that if you are in the early stages of a project or
business, it's quite hard to justify NOT using severless techs

At a large operating scale, it’s hard to NOT justify instance based
compute, based on the large percentage savings

8

- Time machine image

- “If I had a time machine, I would convince myself to switch to the
cloud mindset”

- And there are three areas here I want to talk about

9

“I would have told myself the cloud mindset is about”
… figuring what you *dont* need to do

deliver more, code less — use the amazing array of cloud services &
sass products out there
This is likely to mean that you are solving a higher order problem

You are likely to find yourself piecing together the right combination
of existing services, to make a sum that is greater than it’s parts
So instead of

Storing files on disk — consider using Azure Blob Storage or
AWS S3
Using a database table as a queue (I know one of you has done
that before) — consider Azure ServiceBus or AWS SQS
writing your own facial recognition software — consider AWS
Rekognition or Azure Cognitive Services Face API
Re-inventing the wheel — RENT a wheel from someone else

10

Rent > buy > build
Consider renting (pay-per-transaction) over buying (paying for
upfront perpetual license) over building (writing it yourself)
Writing it yourself is the least preferable option — it is likely to
cost the most

11

“I would have told myself the cloud mindset is about”
…preparing for failure

cloud systems are more often than not distributed systems — that is,
they are not just built off of one application, they are constructed of
many smaller systems, microservices, to create a sum that is greater
than it’s parts
That means that you are going to need to traverse a network
The network is not guaranteed, you cannot guarantee that the
network call that you made is going to succeed

It may not even be a transient problem — we were recently reminded
on 4th September, by Azure, that as an industry, we’ve not yet
cracked totally cracked HA — one problem in a data centre in the US
had a global impact on many azure services

This sucks. But there are a couple of things to can do to make your
life much easier

1) you can apply various connection management policies
The simplest of which is a retry policy
But there are other more complex or types, such as circuit
breaker or retry with exponential backoff

12

There are some popular libraries that can help with this sort of
thing — it’s worth checking out Polly for .NET & Hystrix for Java
— and there’ll be equivalents for other languages

12

2) when you are designing your API, ensure it is idempotent. When
you are calling another API, make sure that it is idempotent.

idempotency is a property of an API where it can be executed
multiple times with the same input data without changing the result
beyond the initial application

Why is this important?
If you cannot guarantee the network, you need to be sure that
multiple requests / retries can be made to an API with the
same outcome

13

“I would have told myself the cloud mindset is about”

… know when NOT to use to cloud

We have this poster in our office — “Like cider, technology is better
cloudy”
In general, I agree with this, but it’s fair to say that this isn’t always
the case. It’s true that cloud is not the only way to do projects these
days
story

I once worke d on a system that collected data from IoT
devices in realtime, but then processed it offline

Crucially, there was NOT a requirement to complete the offline
processing in a particularly timely fashion – a week was ok.

we started by designing & developing a solution for the cloud,
but it quickly became clear that actually this wasn’t necessary
— and that it would be significantly cheaper to run the process
on-prem

Ok we would not be guaranteed the uptime, and we had a long

14

lead-time for infrastructure, but crucially if the system was
down for a few days, we had a DR plan, and it didn’t actually
matter…

14

So when you’ve next another project on the horizon, watch this back
online, and perhaps one or more of these things will be starting point
for some interesting discussion

If you’ve got any questions, then please feel free to talk to me here at
the conference, or send me a tweet!

Thank you!

15

