
1



• My name is Chris Priest
• I work for Amido / ASOS
• I know cloud
• I know C#
• I’m a bit of a data nerd
• I’m not an MR expert, but I’ve done a bit of stuff

• Above all I like to solve real problems with tech

2



• I thought this would be relatively easy area to look into

• From what I can see, there doesn’t appear to be any previously 
published work covering Serverless, Map Reduce & .NET – obvs 
those individual topics have lots of coverage on their own

• I had about 4 weeks of evenings available to me, turned out that it 
was actually quite hard to build a working prototype in that 
timescale

• So this talk is, in part, about a journey that is not yet complete – I 
want to share with you the good & the bad, where I am now, and I’d 
love your feedback aftwerwards

3



4



5



- First of all, before we get into the detail, forgetting .NET, & even 
serverless, what sort of problems are we trying to solve with 
MapReduce?

- The kind of scenarios that conventional data processing tools don’t 
work in, are related to large data sets, usually that do not have any 
structure, e.g. flat files

6



MR is a programming model, not a library

This bit is important

There is nothing about the MR programming model that means you 
should use java, linux, hadoop, HDInsight, or even servers!

- It is a model that is designed to leverage a parallel running & 
distributed system

- That is, it is actually designed to work in, amongst others, the 
cloud and leverage lots of available compute to complete a 
given task sooner

- Going to go through an analogy, some theory and the look at some 
code

7



This is other important bit for me

We can free ourselves from trying to make something complete 
sooner just by making execution faster – there are practical limits to 
how far you can go with this

- If we want to get 3 or 4 people from A to B, we could do so in this 
car. 

- What if wanted to get 7 or 8 from A to B – it’s going to take two 
trips… that’s no good, will take twice as long

- So… let’s optimise, spend a lot of money developing a faster car…
now this car is 4 times as fast… we can move the same number of 
people in the same timeframe

- Now we want to move 20 people, 40, 80… we could keep 
developing faster cars, but we are likely to get much lower returns 
as we optimise

- i.e. the same performance increment costs more and more, 
until you are paying huge sums of money to get just a little bit 
faster

8



- What if you could change the approach?
- Instead, spend money on buying many small & slow cars?

- Actually then you then have capacity increasing with cost
- And another benefit, if a car breaks down, the vast majority of the 

work still gets done – you are much more resilient to issues

Make it complete sooner by executing more slowly, but in parallel

There are practically no limits in this scenario – you get much more 
bang for your buck

- In much the same way, Map Reduce allows you to reframe a 
problem in a way that can be worked on in mass parallel, on not 
particularly highspec hardware

9



MapReduce is a programming model

- Not about language
- Not about OS / hardware

- It helps us to think of a problem in a way that can be more easily 
executed by an underlying system

- So in the MR example, the programming model will help us to 
express our the algorithm we want to apply to our data, in a way 
that can leverage a parallel running / distributed system

- I like to think of a programming model as a guidance system, 
something that guides you on the path

- It can’t totally prevent you from abusing the system… but it 
can persuade you not to

10



- Start with some input data
- Apply some map function to this data, 

- Outputs some key/value pairs
- So then we have a set of mapped data

- Apply some reduce function to this set of key/value pairs
- Essentially takes a set of key/value pairs and reduces this to 

one key/value pair for each key
- Reduce function can take output of reduce function as input

- You can keep reducing until you can’t reduce any 
further

11



So lets go through a complete MR worked example

- We want to count the number of each word in our document

- During the map phase we map the input to zero or more outputs.
- In this case for every word we are outputting the word as a 

key, and the value ‘1’

12



- For the reduce phase we are reducing a group of mapped values 
into something that makes more sense

- So for this reduce algo, we can simply group together KVP of the 
same key, and then simply sum the values

- For the output you can see out final result – that ASOS occurred 3 
times in our original text, and that here, there & everywhere 
occurred just the once

13



- Now what if we are working in a distributed system?

- We could actually split up the previous output into two smaller 
groups, and apply the reduce algorithm to those separately.

- We’ve easily made the job smaller and it’s possible to run it in 
parallel!

- This could be theoretically scaled a further, smaller chunks, 
more in parallel

14



- If you do that, then there is another reduce (exactly the same algo) 
to run against the previous reduce outputs

- That gives rise to the same output as before
- But we ran it in a distributed sense

15



I found records of ¼ million accidents that occurred on UK roads in 
2016, so not a huge amount of data but enough to demonstrate the 
approach

The data.gov.uk website has loads of good stuff on it – recommend 
having a look around.

- For our data
One record for every accident, lots of data but we are just 

going to look at the Make of the vehicle 
- i.e. how many Fords, Vauxhalls etc had accidents

16



This is snip of the data

A big chunk of the middle chopped out to make it easier to view

Basically it’s a CSV file, so we can reliably split each line on commas 
and extract the make of the vehicle that had the accident

17



All the code I’m going to show you is prototype code

Why do you produce a prototype?
• To gather evidence on an approach at low cost
• Such that you can then decide whether to invest more in the future

What is prototype not?
• It isn’t necessarily maintainable or elgant
• It took me around 4 weeks of evening work!

It’s not of production quality, it’s the result of an experience to see if 
this is possible
• It probably has lots of bugs
• The demo later will probably fail

It’s not perfect – but I’ve learnt a lot and I’ll talk more about possible 
improvements later on

18



- I’m going to show a demo in a little bit – remembering that it’s 
counting accidents in 2016 by car manufacturer

- This it the mapper that I implemented

- Walk through it

19



- Respective Reducer function

- A little more complex

- Walk through it

20



- Respective Reducer function

- A little more complex

- Walk through it

21



- Respective Reducer function

- A little more complex

- Walk through it

22



- This is the final step. It’s optional

- Usually it’s a transform of data from format that is optimised for 
the reduce stage into format that is optimised for the consumer

- In this case, I’m taking each KVP and outputting a line in simple 
CSV format

23



- This is the final step. It’s optional

- Usually it’s a transform of data from format that is optimised for 
the reduce stage into format that is optimised for the consumer

- In this case, I’m taking each KVP and outputting a line in simple CSV 
format

24



- computing as opposed to framework

25



Serverless is an execution model

This bit is important

Refer back to early separation of programming model and execution 
model when talking about MapReduce

There is nothing about this execution model that means you should 
use Lambda, GCF, Azure Functions etc, or

All you should need to think about is executing your task – compute, 
data storage, etc – and you should not have to concern yourself with 
the underlying infrastructure

26



What other utility services are we aware of?

Utility service -- services made available to the customer as needed, 
and charges for specific usage, rather than a flat rate

- you do not pay for excess capacity

Utility computing is the packaging of system resources, such as 
computation, storage and services, as a metered service.

- with an EC2 instance, you pay for excess capacity to sit there 
doing nothing most of the time 

I like to think of the goal of utility computing as being comparable to 
the goals of household ”utilities”

- we don’t care how the gas / elec / water gets there – we 
don’t care about the underlying infrastructure

- we want it to be there as soon as we turn on the tap
- more when we open the tap, less when we close it
- SLAs, Ofgem Quality of Service Guaranteed Standards, 

minimum downtime

- interestingly, your home broadband probably doesn’t fit into this 
paradigm

27



- You tend to pay for / provision some bandwidth that you may 
or may not use

- We used to have a metered service – dial-up – but that 
wasn’t popular

- So perhaps not all true utility services are good

27



- No SLA
- depending on your scenario, you may not or may not be able 

to use serverless in your particular use case – it may be that your 
volumes / criticality is too high to get away without an SLA

28



- computing as opposed to framework

29



The nature of Map Reduce is that you break a big problem into little 
bits that can be worked on independently & in parallel

The nature of serverless is that you can compute small pieces of 
independent work in parallel

If you take one thing away from this talk it’s this: The Serverless
Execution Model and MapReduce Programming model are an 
excellent fit for one another.

This part
1) Walk through some real data, real code, real output
2) Look at architecture & design highlights / interesting stuff in the 

prototype
3) Demo – answer an important question with real data

30



(Please work!)

31



- I promised that tonight I would answer real questions with real 
data.

- Jeremy Clarkson has frequently made a derogatory assertion about 
Audi drivers

- I intend today to use data to irrefutably prove one way or another –
does owning an Audi make you a bad driver?

- Some caveats – I may have slightly simplified this problem…
- Just looking at 2016. use accident data that I previously 

mentioned
- Filter out those accidents where the vehicle is older 

than 1 year old
- Also take new car registration data from SMMT (Society of 

Motor Manufacturers and Traders) in the same year
- Work out how many new registrations were made for each 

accident, by manufacturer
- è if you buy a new car, which brand is most likely to make 

you crash it
- Just a bit of fun…

32



Prep
1. Run purgeAwsResources.sh

This demo will probably fail!
1. Explain what we want to try and show
2. Explain data sources – SMMT (Society of Motor Manufacturers and 

Traders -- for manufacturing numbers) & data.gov (for accident 
numbers)

3. Show Map, Reduce & Final Reduce functions
4. Show monitoring page and that everything is zero
5. Show S3 bucket, and that it is empty apart from the two raw data 

files
6. Show SQS queues, and that they are all empty
7. Show contents of enqueueInitialMessage.sh and that it simple 

puts two messages on a queue, talk through parms
8. Run ./enqueueInitialMessage.sh
9. Show that raw message queue now has one item in it
10. Show contents of startProcess.sh and that it kicks off a lambda 

process, talk through params
11. Run ./startProcess.sh
12. Show that 202 returned (202 == Accepted)
13. Refresh monitoring page, refresh SQS monitor page to show 

progress
14. Kill time – perhaps talk through what is happening
15. Refresh monitoring page, refresh SQS monitor page to show 

process finished
16. Download finalised file

1. Open In sublime?!

32



- As of today the code used in today’s prototype is open source

- Please take a look

- It would be great to have people take a look at this code, let me 
know what you think what to you like, what do you hate, fork it, 
submit a PR, raise an issue

33



- computing as opposed to framework

34



• First a quick look at the high level architecture of the prototype

• Mention S3 storage here as well

35



• Want to talk about the use of the Mediator in this example

• Why?
• By reducing coupling between components, have them 

communicate through a mediator, then I have flexibility over 
how & what executes behind an interface

• The mediator decides what to invoke, and how
• Component A truly knows nothing about Component B, and 

vice versa

36



• So how does this help in this particular example?

• There are a couple of key scenarios, this is the first

• This is the first – rather than have your classes dependant on an 
interface, and compiler-based invocation, switch to state based 
invocation – means that components are even further decoupled.

• The component that is invoked is selected by infrastructure 
configuration

• Could also mention FileSystem v S3 storage

• What is the benefit here?
• Find that you end up refactoring tests far less when you 

change a components interface.
• Can leverage some standard tooling, such as for things like 

logging 

37



• The other (much more interesting) scenario is to do where you 
invoke a component

• Imagine this simple scenario where the Worker Manager / 
Orchestrator invokes an instance of the Mapper

• At the moment the Mapper is likely executed locally to the Worker 
Manager

38



• If you separate the Worker Manager & the Mapper with a Mediator 
you have the possibility to entirely change where & how invoke the 
Mapper

39



• Imagine if the Mediator was able to take the work that you want to 
do and abstract away exactly where & how it is executed

• Worker Manager knows nothing about how the mapper will be 
invoked

• Dispatch is totally separated from execution
• Could be locally (new Thread()), or on AWS lambda, Azure 

Function, GCP… or something entirely different
• All in configuration
• Same command is passed regardless

• What is the benefit here?
• Allows me to test code running locally and have a high 

degree of confidence that it’ll work when the dispatcher and 
executer are changed

• Change the environment upon which the code runs through a 
simple & abstract configuration change

40



• In my prototype I used the excellent Commanding framework by 
James Randall

• Lots of flexibility in terms of how you dispatch & execute your 
command and queries

• Ability to standardise code executed before & after every query, 
such as recording performance metrics, logging etc

• Loads of great blog posts / doco, especially if you are interesting in 
this kind of library & pattern to break up your monolith

• I recommend you check it out!

• Also checkout James’ Serverless Scaling Faceoff, Functions vs 
Lambda, blog posts – made the top of Hacker news

41



42



43



• So what is bad / what can be improved about this prototype?

• Performance computer & costs
• particularly small jobs isn’t that great. Especially compare to 

running on laptop where sample will run in around 6s
• Functions themselves perform relatively slowly in 

comparison
• Then there is overhead of reading & writing to S3 v 

reading & writing to memory…

• The best serverless implementations are entirely event driven
• This implementation relies the regular triggering of an 

orchestrating / co-ordinating process
• Would be better if the entire process was event driven, with 

each function raising a new event when work is complete, 
which in turn triggers another even that determines if more 
work is to be done

• Scaling
• This is due to a bug / limitation.
• Each function writes its status to a central location, which is 

the read by the Manager / co-ordinator

44



• More functions that run --> more status objects to read by 
the worker manager

• There is a complex solution to the problem of storing 
state – I write a library around S3 for storing arbitrary 
objects – more on that later

• Going to talk more about how to tackle these now

44



• First a quick look at the high level architecture of the prototype

45



- Want to get into more detail on some of the things that could be 
improved

- To re-cap – this is what we currently have with the centralised 
approach

- The orchestrator looks at what is going on, and then decides how 
much work to kick off

- If there is already work being done, then do not kick anything off

- Not very effcient -- lumpy workload, and orchestrator that is 
almost always running and not doing very much

46



• First a quick look at the high level architecture of the prototype

47



• Why do this?
• control / visibility over the number of running functions

• Think of it as a distributed, eventually consistent synchronised 
counter

• You can determine the number of currently executing functions by 
getting the number of currently inflight messages

• If function times out / throws exception / doesn’t complete, the 
inflight message is returned to the queue (and made available) 
automatically by SQS

48



- Here is a closer look at how each function might look in a 
decentralised scnearios

- Walk through from left to right

49



- I think you’ll end up with a execution pattern like this

- Much more efficient at utilising compute resources, and no 
orchestrator

50



• Feedback – I’m in the bar after the talks today, please come & tell 
me what you think

51



52


